
Cisco > Inside Cisco IOS Software Architecture > 6. Cisco 7500 Routers > Hardware Architecture of the 
Cisco 7500 Router 

See All Titles

Hardware Architecture of the Cisco 7500 Router 

Figure 6-1 provides a high-level diagram of the 7500 router architecture. As you can see from this diagram, 
there are two components central to understanding the unique features of IOS on the 7500: the data bus 
and Route Switch Processor (RSP). 

Figure 6-1. The 7500 Architecture 

  

The Data Bus 

The data bus in the 7500 router, like that of its predecessors (the AGS+ and 7000), is based on the 
proprietary Cbus architecture.The Cbus used in the 7500 is a faster version of the 7000's Cbus called the 
CyBus (the 7000's Cbus is often called the CxBus). Like the original Cbus, the CyBus is a 32-bit bus with 32 
data lines, 8 command lines, 24 address lines, and other lines used for control operations such as bus 
access, acknowledging successful transactions, and error reporting. 

Thirty-two lines of data might seem small in comparison to other modern buses, some of which use 128 or 
more data lines, but this number was chosen so older CxBus interface processors would still work when 
connected to a CyBus. Newer CyBus-enabled interface processors are capable of performing two 
transactions (two 4-byte reads) during each bus clock cycle (60 ns/16.67 MHz), while CxBus interface 
processors can perform only one transaction (one 4-byte read) in each clock cycle. As a result, the CyBus 
offers 1.066 Gbps (64 bits * 16.67 MHz) of bandwidth, effectively doubling the bandwidth offered by the 533-
Mbps CxBus (32 bits * 16.67 MHz). 

NOTE 

When a combination of CyBus- and CxBus-capable interface processors are present on the 
CyBus, CyBus-capable interface processors can use the full 1.066-Gbps bandwidth. The CxBus-
capable interface processors are still restricted to 533 Mbps. 

 
There are four different router models within the 7500 family, as follows: 

< BACK Make Note | Bookmark CONTINUE >

Page 1 of 10

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=48



7505—   

Single CyBus and five slots (one RSP slot) 

7507—   

Dual CyBus and seven slots (two RSP slots) 

7513—   

Dual CyBus and 13 slots (two RSP slots) 

7576—   

Two independent 7500 routers in the same chassis, each with dual CyBusses 

A 7500's model number can be determined by executing show environment all on the router's console. 
Example 6-1 illustrates the output from a 7505 and 7507 router. 

Example 6-1. show environment all Command Output on 7505 and 7507 Routers 

7505#show environment all Arbiter type 1, backplane type 7505 (id 1) …. 7507#show environment all 
Arbiter type 1, backplane type 7507 (id 4) ….  

Route Switch Processor 

The Route Switch Processor, more commonly called the RSP, performs centralized routing and switching 
functions (what a surprise!). The RSP is often considered the heart of a 7500 series router because it makes 
switching decisions, runs routing protocols, and performs maintenance tasks. 

The RSP is essentially equivalent to a combined Route Processor (RP) and Switch Processor (SP) from the 
Cisco 7000 router. Combining the RP and SP function on a single board eliminates the relatively slow 
Multibus (155 Mbps) needed on the 7000 and AGS+ to connect the RP and SP systems together. This is 
one of the reasons why an RSP outperforms an RP/SP so dramatically. 

Table 6-1 shows the four different RSP types supported by Cisco 7500s. 

The type of RSP installed in a 7500 can be determined using show version, as demonstrated in Example 
6-2 

Example 6-2. Determining the RSP Type Used on a 7500 Router 

router#show version cisco RSP2 (R4700) processor with 32768K/2072K bytes of memory. R4700 CPU at 
100Mhz, Implementation 33, Rev 1.0 ….  

Table 6-1. Cisco 7500 Router RSP Types 
RSP Characteristics 
RSP1 MIPS R4600 or R4700 CPU; single CyBus interface; can be used only on a 7505; Max 128 MB 

DRAM; 2 MB MEMD 
RSP2 MIPS R4600 or R4700 CPU; dual CyBus interface; can be used on a 7505, 7507, 7513, or 7576; 

Max 128 MB DRAM; 2 MB MEMD 
RSP4 MIPS R5000 CPU; dual CyBus interface; can be used on 7507, 7513, or 7576; Max 256 MB DRAM; 

2 MB MEMD 
RSP8 MIPS R7000 CPU; dual CyBus interface; can be used on 7507, 7513, or 7576; Max 256 MB ECC 

DRAM; 8 MB MEMD 

Page 2 of 10

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=48



Figure 6-2 illustrates a high level overview of the RSP. 

Figure 6-2. A Route Switch Processor 

  

Three of these components play a major role in how IOS—in particular, how IOS switching—operates on the 
7500 router. 

CPU 

Fast packet memory (designated by MEMD) 

Main memory (designated by DRAM) 

The following sections describe these components in more detail. 

CPU 

The RSP's CPU is the main processor on the 7500 router; it's responsible for running IOS and switching 
packets. Unlike the 7000 and AGS+, there's no separate packet switching microcode (SP microcode or 
Cbus controller microcode); with the exception of distributed switching, all switching decisions on the 7500 
are performed in IOS running on the RSP CPU. RSPs use MIPS Reduced Instruction Set Computer (RISC) 
processors; the clock rate, the cache size, and the type of cache depend on the model. 

Fast Packet Memory 

RSP1s, RSP2s, and RSP4s have a fixed 2 MB bank of SRAM reserved for packet buffers; the RSP8 has 
8MB of SDRAM reserved for packet buffers. This fast packet memory region is named MEMD just like the 
similar region in the Cisco 7000 and AGS+. The 7500's MEMD is connected to both the RSP CPU and the 
interface processors (via the CyBus); both have direct access to it as a shared resource. 

Although MEMD is carved into pools of buffers using an algorithm similar to the one used on the Cisco 
7000, some changes in the hardware allowed improvements to be made. For example, the 7500 can carve 
up to 3520 buffers, a vast improvement over the 7000's limit of 470. A complete description of the algorithm 
is beyond the scope of this book, but a simplified overview of the process follows: 

Step 1. Interfaces on the router are classified into various groups based on MTU size. The range of MTU 
sizes accepted in each group is initially set to a variance of 256 bytes. If there are more MTU sizes than can 
be accommodated by four groups, the variance is doubled to 512 bytes. If there are still more than four 

Page 3 of 10

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=48



groups, the variance is doubled again to 1024, and so on until at most four groups are defined. 

Step 2. Each of the buffer pools from Step 1 gets 20 percent (360 KB) of MEMD, the remaining MEMD is 
then divided among the pools based on the aggregate bandwidth of all interfaces within a pool. 

To illustrate the process, assume there are five interfaces on a router with MTUs of: 

512 bytes 

1024 bytes 

1500 bytes 

4096 bytes 

16,000 bytes 

IOS begins by defining five packet buffer pools: 

poolA—   

512 byte buffers, serves interfaces with MTU in the range 256 < MTU = 512 bytes 

poolB—   

1024 byte buffers, serves interfaces with MTU in the range 768 < MTU = 1024 bytes 

poolC—   

1500 byte buffers, serves interfaces with MTU in the range 1244 < MTU = 1500 bytes 

poolD—   

4096 byte buffers, serves interfaces with MTU in the range 3840 < MTU = 4096 bytes 

poolE—   

16,000 byte buffers, serves interfaces with MTU in the range 15,744 < MTU = 16,000 bytes 

Because there are more than four pools, the algorithm tries again using the 512 byte variance and comes up 
with new pool definitions: 

poolA—   

512 byte buffers, serves interfaces with MTU in the range 0 < MTU = 512 bytes 

poolB—   

1500 byte buffers, serves interfaces with MTU in the range 988 < MTU = 1500 bytes 

poolC—   

4096 byte buffers, serves interfaces with MTU in the range 3584 < MTU = 4096 bytes 

poolD—   

Page 4 of 10

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=48



16,000 byte buffers, serves interfaces with MTU in the range 15,488 < MTU = 16,000 bytes 

This time, all five interfaces can fit into four pools. Notice poolB now accommodates interfaces with the 
1024- and 1500-byte MTUs. 

It's rare there would be more than four MTU sizes on a given router, so this process generally doesn't iterate 
further than the first step. If there are less than four MTU sizes configured across the interfaces, IOS creates 
only the number of pools needed. 

After the pool sizes have been decided, IOS divides MEMD into five parts, each representing 20 percent of 
the total memory available. One part is placed in each of the four pools, and the remaining part (20 percent) 
is divided among the pools based on the types and speeds of interfaces associated with each pool. There is 
some overhead associated with MEMD control structures—for example, some MEMD is reserved for 
communication between the CPU and the interface processors—so the entire 2 MB of MEMD is never 
available solely for packet buffers. 

In the preceding example, we assumed the MEMD buffer sizes were equal to the MTU in each buffer pool 
for simplicity, but in practice, MEMD buffers are created slightly larger than the largest MTU accommodated 
by a pool. MEMD buffers must be large enough to hold the largest MTU and still have room for an 
encapsulation header to be added on. Beyond this, MEMD buffers must be an even multiple of 32 bytes so 
they align properly in the hardware memory cache for optimum performance. As a result, MEMD buffers 
receive a memory allocation based on the formula size = mtu + e + n, where mtu equals the largest MTU, e 
equals the largest encapsulation that can be added for the associated interface, and n is the number of filler 
bytes (0–31) required to make the result an even multiple of 32. 

NOTE 

The MEMD buffer carving algorithm does not take into account the state of an interface (that is, 
whether it is up or down) when deciding what size pools to create. Buffers are allocated to unused 
and administratively down interfaces just as if they were up and running full traffic. The rationale is 
those administratively down interfaces could still be turned on at a later time and require the use of 
MEMD resources, so they have to be taken into account. Because the presence of unused 
interfaces can result in thinner distribution of MEMD buffers overall, it's best to remove any unused 
interface processors, if possible, to make the maximum amount of MEMD available to the active 
interfaces. 

MEMD resources are used most efficiently if all interfaces are configured for a common MTU size 
(typically 1500 bytes). That way, the MEMD carving algorithm creates only one buffer pool shared 
among all the interfaces. 

 
The show controller cbus command output provides a snapshot of MEMD control structures and shows 
how it has been carved—invaluable information for troubleshooting. Example 6-3 shows a partial output 
from the command followed by descriptions of some interesting fields. 

Example 6-3. show controller cbus Command Output 

router#show controller cbus MEMD at 40000000, 2097152 bytes (unused 2976, recarves 4, lost 0) RawQ 
48000100, ReturnQ 48000108, EventQ 48000110 BufhdrQ 48000128 (2939 items), LovltrQ 48000140 (11 
items, 2016 bytes) IpcbufQ 48000150 (16 items, 4096 bytes) IpcbufQ_classic 48000148 (8 items, 4096 
bytes) 3570 buffer headers (48002000 - 4800FF10) pool0: 9 buffers, 256 bytes, queue 48000130 pool1: 278 
buffers, 1536 bytes, queue 48000138 pool2: 305 buffers, 4544 bytes, queue 48000158 pool3: 4 buffers, 
4576 bytes, queue 48000160 slot1: EIP, hw 1.5, sw 20.06, ccb 5800FF30, cmdq 48000088, vps 4096 
software loaded from system Ethernet1/0, addr 00e0.8f6d.a820 (bia 00e0.8f6d.a820) gfreeq 48000138, 
lfreeq 48000168 (1536 bytes), throttled 015 rxlo 4, rxhi 101, rxcurr 0, maxrxcurr 1 txq 48000170, txacc 
48000082 (value 49), txlimit 50  

MEMD at 40000000, 2097152 bytes (unused 2976, recarves 4, lost 0)—   

This line shows MEMD begins at address 0x40000000 in the CPU's memory and is 2 MB. The 

Page 5 of 10

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=48



unused field reports the number of unused bytes—this is usually small (less than the largest MTU) 
and is nothing to worry about. The recarves field indicates the number of times the IOS MEMD 
carving algorithm has run. Several situations can cause a MEMD recarve, including the insertion or 
removal of a line card, changing the MTU on an interface, or a microcode reload. This field is set to 1 
when the initial MEMD carve is run during IOS initialization. 

RawQ 48000100, ReturnQ 48000108, EventQ 48000110BufhdrQ 48000128 (2939 items), LovltrQ 
48000140 (11 items, 2016 bytes) IpcbufQ 8000150 (16 items, 4096 bytes)IpcbufQ_classic 
48000148 (8 items, 4096 bytes)—   

These lines show the memory addresses of various internal MEMD queue data structures. These 
data structures represent lists of MEMD buffers (actually, buffer headers, which are described in the 
following bullet), some of which are used in processing packets. Of particular interest is the one 
called RawQ. The RawQ, as described later in the section on packet switching, is used to queue all 
packets received by interface processors to the CPU on the RSP. 

3570 buffer headers (48002000 - 4800FF10)—   

This line shows the total number of addressable MEMD buffer headers. A buffer header is a control 
structure containing data about a MEMD buffer and a pointer to the actual location of the buffer (see 
Figure 6-3). Every MEMD buffer has its own unique buffer header. 

Figure 6-3. Buffer Headers 

  

These buffer headers are a lot like labels on a soup can; they provide a quick snapshot of what's 
inside without having to open the can. The headers provide a convenient way for IOS to pass around 
descriptive information about MEMD packet buffers without having to send the buffers themselves. 
On the RSP there can be a total of 3570 buffer headers. 

pool0: 9 buffers, 256 bytes, queue 48000130 pool1: 278 buffers, 1536 bytes, queue 48000138 
pool2: 305 buffers, 4544 bytes, queue 48000158 pool3: 4 buffers, 4576 bytes, queue 
48000160—   

These lines show how the available 2 MB of MEMD has been carved. The first buffer pool (pool0) 
and the last pool (pool3 in this example) are reserved for interprocess communication between the 
interface processors and the RSP CPU, while the other two pools, pool1 and pool2, are carved for 
packet buffers. 

Page 6 of 10

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=48



Packets are stored in MEMD buffers based on the interface they are received on, not the size of the 
packet. For example, if a 64-byte packet is received on an interface with a 1500-byte MTU (1536-byte 
MEMD buffer size), it still is stored in a 1536-byte buffer—even if another pool exists with smaller 
buffers. 

If a packet arrives on an interface and there no available MEMD buffers in the interface's pool, the 
packet is dropped and the interface's ignored counter is incremented. This situation occurs even if 
there are buffers available in other pools. Setting all the interface MTUs to the same size results in all 
MEMD buffers being placed in one pool, which reduces the likelihood of a packet being dropped 
because the interface pool is empty. 

slot1: EIP, hw 1.5, sw 20.06, ccb 5800FF30, cmdq 48000088, vps 4096software loaded from 
system—   

This shows data about the interface processor in slot 1; each slot populated with an interface 
processor will have similar information displayed. An Ethernet interface processor (EIP) is in slot 1, its 
hardware version (hw) is 1.5, and the software version (sw) is 20.06. The ccb and cmdq are data 
structures used for communicating with the RSP. 

Ethernet1/0, addr 00e0.8f6d.a820 (bia 00e0.8f6d.a820gfreeq 48000138, lfreeq 48000168 (1536 
bytes), throttled 015rxlo 4, rxhi 101, rxcurr 0, maxrxcurr 1txq 48000170, txacc 48000082 (value 
49), txlimit 50—   

These lines provide further information about each interface, including pointers to the locations of 
their various MEMD data structures: 

gfreeq is a pointer to the global free queue. The global free queue is a list of all the free 
MEMD buffers in a particular pool. All interfaces sharing the same MEMD buffer pool point to 
the same global free queue. 

lfreeq is a pointer to the interface's private local free queue. In addition to the global list of free 
MEMD buffers in each pool, individual interfaces can keep a local "stash" of free buffers 
obtained from the global pool. While all free buffers initially come from the global free queue, 
once an interface has used a buffer, it can keep the buffer for a short period of time. This helps 
prevent ignored packets when there are other busy interfaces competing for buffers in the 
global free pool. Unused free buffers on the local free queue are periodically returned to the 
global free queue for use by other interfaces. 

rxhi shows the maximum number of MEMD buffers a particular interface can hold at any time. 
This prevents one interface from holding all the free buffers in the global pool and starving 
other interfaces. 

rxcurr represents the number of buffers currently held by this interface (this counter may 
constantly be non-zero for a very busy interface). 

maxrxcurr represents the maximum number of buffers this interface has ever held since the 
last time MEMD was recarved—that is, it's a "high water" mark. This number should never be 
higher than the rxhi value. 

rxlo is always 4. This field indicates the smallest number of buffers this interface will hold in its 
local free queue when idle (assuming there was ever traffic on this interface). 

txq is a pointer to a list of buffers containing packets waiting to be transmitted out this 
interface. The list is called the transmit queue and this field is known as the transmit queue 
pointer. 

txlimit is the maximum number of buffers allowed on the interface's transmit queue at any 
time. The value in parentheses preceding this field shows the remaining number of buffers 
allowed on the transmit queue. In Example 6-3, the value in the parentheses is 49 and the 

Page 7 of 10

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=48



 

txlimit is 50. This means that one packet is currently enqueued on the interface's transmit 
queue. A value of zero within the parentheses indicates no more packets can be placed on the 
transmit queue until some are removed. 

Main Memory 

Main memory on an RSP consists of up to 128 MB (256 MB on RSP4s and RSP8s) of upgradable DRAM. In 
general, RSP main memory contains the IOS code plus all the data structures IOS uses at runtime. 
Example 6-4 displays the output from show memory summary on a Cisco 7500 router. 

Example 6-4. show memory summary Command Output for 7500 Router 

router#show memory summary Head Total(b) Used(b) Free(b) Lowest(b) Largest(b) Processor 60AD9EE0 
55730464 9405352 46325112 45891060 46251636 Fast 60AB9EE0 131072 82168 48904 48904 48860 ….  

From this example, you can see IOS divides RSP main memory into two memory pools: processor and fast. 
The fast memory pool is used to store interface data structures called interface descriptor blocks,while the 
processor pool is used to store instructions, data, control structures, packet forwarding tables, system 
packet buffers, and the heap. Although it might appear limited, the small amount of memory in the fast 
memory pool is not a constraining factor; if the number of interface descriptor blocks exceeds the available 
fast pool, IOS simply begins using memory from the processor memory pool. 

Processor memory on the 7500 platform also contains the system buffer pools, which are described in 
Chapter 1, "Fundamental IOS Software Architecture." 

 

Last updated on 12/5/2001
Inside Cisco IOS Software Architecture, © 2002 Cisco Press

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section 

<$endrange>Cisco 7500 series routers 
      RSP (Route Switch Processor) 
<$endrange>MEMD buffer carving algorithm 
<$endrange>RSP (Route Switch Processor) 
      Cisco 7500 series routers 
<$startrange>Cisco 7500 series routers 
      RSP (Route Switch Processor) 
<$startrange>RSP (Route Switch Processor) 
      Cisco 7500 series routers 
7500 series routers 
      data buses 
     RSP 
            CPUs 
            main memory 2nd 
            MEMD (memory D) 2nd 3rd 4th 5th 6th 7th 
      RSP (Route Switch Processor) 2nd 
algorithms 
      MEMD buffer carving 2nd 3rd 
buffer pools 
      Cisco 7500 series routers 2nd 
buffers 

Page 8 of 10

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=48



      Cisco 7500 series routers 
      MEMD 
buses 
      Cisco 7500 series routers 
Cisco 7500 series routers 
      data buses 
     RSP 
            CPUs 
            main memory 2nd 
            MEMD (memory D) 2nd 3rd 4th 5th 6th 7th 
commands 
      show controller cbus 2nd 3rd 4th 
      show memory summary 2nd 
      show version 
CPUs 
      Cisco 7500 series RSP (Route Switch Processor) 
data buses 
      Cisco 7500 series routers 
fast memory pools 
      Cisco 7500 series router 
fast packet memory 
      MEMD, see MEMD (memory D) 
fields 
      show controller cbus command 2nd 
global free queue 
      Cisco 7500 series router MEMD 
ignored counter 
      MEMD 
interface descriptor blocks 
      Cisco 7500 series router 
interfaces 
      Cisco 7500 series routers 
local free queue 
      Cisco 7500 series router MEMD 
maxrxcurr 
      Cisco 7500 series router 
MEMD 
      buffers 
      Cisco 7500 series routers 
MEMD (memory D) 
      Cisco 7500 series routers 2nd 3rd 4th 5th 6th 7th 
MEMD buffer carving algorithm 2nd 
memory 
      Cisco 7500 series routers 2nd 
memory pools 
      Cisco 7500 series router 
MTU sizes 
      Cisco 7500 series routers 2nd 
output 
      show controller cbus command 2nd 3rd 4th 
packet buffer pools 
      Cisco 7500 series routers 2nd 
pools 
      Cisco 7500 series router 
processor memory pools 
      Cisco 7500 series router 
processors 
      Cisco 7500 series RSP (Route Switch Processor) 
queues 
      Cisco 7500 series router MEMD 
recarves field 

Page 9 of 10

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=48



      show controller cbus command 
Route Switch Processor 
      Cisco 7500 series routers 2nd 
Route Switch Processor) 
      CPUs 
      main memory 2nd 
      MEMD (memory D) 2nd 3rd 4th 5th 6th 7th 
routers 
     Cisco 7500 series 
            data buses 
            RSP (Route Switch Processor) 2nd 
RSP (Route Switch Processor) 
     Cisco 7500 series 
            CPUs 
            main memory 2nd 
            MEMD (memory D) 2nd 3rd 4th 5th 6th 7th 
rxcurr 
      Cisco 7500 series router 
rxhi 
      Cisco 7500 series router 
rxlo 
      Cisco 7500 series router 
show controller cbus command 2nd 3rd 4th 
show memory summary command 2nd 
show version command 
transmit queue 
      Cisco 7500 series router 
transmit queue pointers 
      Cisco 7500 series router 
txlimit 
      Cisco 7500 series router 
txq 
      Cisco 7500 series router 
unused field 
      show controller cbus command 
 

 
 

About Us |  Advertise On InformIT |  Contact Us |  Legal Notice |  Privacy Policy  
© 2001 Pearson Education, Inc. InformIT Division. All rights reserved. 201 West 103rd Street, Indianapolis, IN 46290

 

Page 10 of 10

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=48


